Specification Physical and chemical properties (PCP) D 263® bio

Non-toleranced numerical values are reference values of a typical production quality.

D 263® bio is a colorless borosilicate glass with a homogeneous, low intrinsic auto fluorescence across the spectrum. Tight, controlled refractive index tolerances ensure consistent, high optical transmission properties and diagnostic results. It offers great chemical stability and resistance to reagents as used in microarray and diagnostic protocols.

D 263[®] bio is produced in a SCHOTT-specific down-draw method, which results in non-porous, ultra-flat fire-polished surface quality on both sides at target thicknesses without polishing. The glass is available in round wafer dimensions or custom-cut rectangular substrates, cleaned inspected and packaged to meet demanding standards of the Biotechnology and Semiconductor industries.

Chemically toughenable and easy to structure, this glass can used in numerous applications in demand of high optical and chemical qualities such as substrate glass for optical diagnostics, microfluidic components or other consumer and industrial applications.

D 263® bio has certified biocompatibility (Cytotoxicity as per DIN EN ISO 10993-5:2009 and Haemocompatibility as per DIN EN ISO 10993-4:2009)

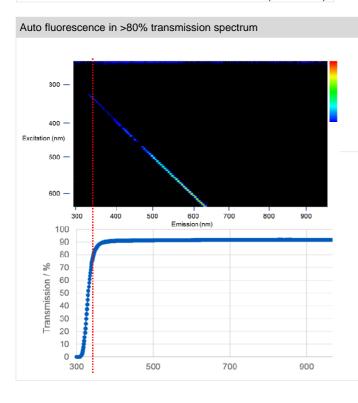
Optical properties		
Refractive indices	$n_{\rm g}$	1.5354
Pretreatment of samples	$n_{F'}$	1.5305
Condition as supplied ["as drawn"]	n _F	1.5300
	n _e	1.5255 ± 0.0015
	n_{d}	1.5231
	n_{D}	1.5230
	$n_{\mathrm{C'}}$	1.5209
	$n_{\mathbb{C}}$	1.5204
Abbe value	$ u_{e}$	55

Thermal properties		
CTE (Coefficient of thermal expansion) α	in 10 ⁻⁶ ·K ⁻¹ (20 °C;300 °C)	7.2
Mean specific heat capacity $c_{\rm p}$	in J/(g·K) (20 °C to 100 °C)	0.8
Transformation temperature T_g	in °C	557
Viscosities	Viscosity $\lg \eta$ in dPas	Temperature in °C
Strain point	14.5	529
Annealing point	13.0	557
Softening point	7.6	736

Mechanical properties		
Density ρ (annealed at 40 °C/h)	in g/cm³	2.51
Stress optical coefficient C	in 1.02·10 ⁻¹² m ² /N	3.4
Chemical toughening	temperature g in °C	410
(d = 0.3 mm)	time t in h	4
	Compressive Stress (CS) in MPa	317
	Depth of Layer (DoL) in µm	18
Young's modulus E	in kN/mm²	72.9
Poisson's ratio μ		0.21
Torsion modulus G	in kN/mm²	30
Knoop hardness	HK 0.1/20	470
Vickers hardness	HV 0.2/25	510

Thi	cknes	s: 0	.1 m	ım,	0.2	1 n	nm.	0.3	mn	, 0.	4 m	m,	1.1	m	n						
100		Т	П	Т	П	Т	Т	П	П	Т	T	T	T	Т		Т	Ť	T	П		Ť
90	1	ŧ	Ħ	+	Ħ	+	Ŧ	Ħ	Ŧ	Ħ	+	ŧ	+		-	+	+	7			
80	1	+	Н	+	Н	+	+	Н	+	-	+	+	+	H	-	+	÷	-	F		-
70		+	H	+	Н	+	+	Н	-	H	+	+	+	H		+	+				1
60		+	H	+	Н	+	+	Н	4	H	+	+	+	H	Н	+	+	+	V		+
50		+	Н	+	Н	4	+	Н		Н	4	+	L	L		4	1				+
40		+	Н	+	Н	4	4	Н	4	Н	4	+	ļ	1		4	1	+			1
30	ш	L	Ц	1	Ш	4	1	Ш			4	1	L	L		4	1	1	U	1	1
20	Ш	L	Ш	1	Ш	4	1	Ш				1	ļ	L	Ц	4	1	1	Ш		_
10			Ш		Ш	1		Ш					L		Ц		1		Ш		
																	Т				
250 +	350	920	750	850	1050	1150	1250	1350	1550	1650	1850			og 52 elen					2750	2950	3050
T 550	hickne											W	ave	elen	gth :				2750	2950	3050
TI 100	hickne											W	ave	elen	gth :				2750	2950	3050
TI 100	hickne											W	ave	elen	gth :				2750	2950	3050
TI 100 90	hickne											W	ave	elen	gth :				2750	2950	3050
TI 100 90	hickne											W	ave	elen	gth :				2750	2980	3050
TI 100 90	hickne											W	ave	elen	gth :				2750	2920	3050
TI 100 90	hickne											W	ave	elen	gth :				2750	2950	3050
TI 100 90 80 70 60 40 40 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	hickne											W	ave	elen	gth :				2750	2950	3050
Transmittance t in % 100 900 800 800 400 300 800 800 800 800 800 800 800 800 8	hickne											W	ave	elen	gth :				2750	25020	3050
TI 100 90 80 70 60 40 40 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	hickne											W	ave	elen	gth :				2750	2500	3050

Transmittance values							
Thickness 0.3 mm	Wavelength	τ (λ) in %					
	at 254 nm	< 0.1					
	at 380 nm	91.2					
	at 632.8 nm	92					
	at 1064 nm	92					
Edge wavelength $\lambda_{c}(\tau = 0.46)$	Thickness in mm	Wavelength in nm					
	0.10	308					
	0.21	315					
	0.30	318					
	0,40	321					
	1.10	329					
Luminous transmittance	Thickness in mm	$ au_{ extsf{vD65}}$ in %					
	0.3	91.7 ± 0.3					



Non-toleranced numerical values are reference values of a typical production quality.

Electrical properties		
Dielectric constant ε _r	at 1 MHz	6.7
(at $g = 25$ °C)	at 1 GHz	6.4
	at 5 GHz	6.3
Dissipation factor tan δ	at 1 MHz	61·10 ⁻⁴
(at $g = 25$ °C)	at 1 GHz	74·10 ⁻⁴
	at 5 GHz	101-10 ⁻⁴
Electric volume resistivity $\rho_{\rm D}$	in Ω·cm alternate current 50 Hz	1.6·10 ⁸ (<i>9</i> = 250 °C)
		3.5·10 ⁶ (<i>9</i> = 350 °C)

Chemical properties		
Hydrolytic resistance	Class	HGB 1
(acc. to DIN ISO 719)	Equivalent of alkali per gram glass grains in µg/g	20
Acid resistance	class	S 2
(acc. to DIN 12116)	Half surface weight loss after 6 hours in mg/dm²	1.4
Alkali resistance	class	A 2
(acc. to DIN ISO 695)	Surface weight loss after 3 hours in mg/dm²	88

The left graph shows a homogeneously low level of fluorescence emission spectra when excited at wavelengths above the 80% transmission threshold (red dotted line) of the glass. The colored diagonal line represents the excitation wavelength itself, with no emittance of fluorescence above and below.